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ABSTRACT
The study of the interdependence of human movement and
social ties of individuals is one of the most interesting re-
search areas in computational social science. Previous stud-
ies have shown that human movement is predictable to a
certain extent at different geographic scales. One of the
open problems is how to improve the prediction exploiting
additional available information. In particular, one of the
key questions is how to characterise and exploit the corre-
lation between movements of friends and acquaintances to
increase the accuracy of the forecasting algorithms.

In this paper we discuss the results of our analysis of the
Nokia Mobile Data Challenge dataset showing that by means
of multivariate nonlinear predictors it is possible to exploit
mobility data of friends in order to improve user movement
forecasting. This can be seen as a process of discovering
correlation patterns in networks of linked social and geo-
graphic data. We also show how mutual information can be
used to quantify this correlation. We demonstrate how to
use this quantity to select individuals with correlated mobil-
ity patterns in order to improve movement prediction. We
show that the exploitation of data related to friends im-
proves dramatically the prediction with respect to the case
of information of people that do not have social ties with the
user. Finally, we discuss how movement correlation is linked
to social interactions, in terms of colocation and number of
phone calls between individuals.

1. INTRODUCTION
The study of the interdependence of human movement and
social ties of individuals is one of the most interesting re-
search areas in computational social science [16]. Previous
studies have shown that human movement is predictable to
a certain extent at different geographic scales [4, 17, 10].
The applications of these prediction techniques are many, in-
cluding content dissemination of location-aware information
such as advertisements in sponsored applications or search
results performed from mobile phones [1].
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In this paper we show how it is possible to improve mobility
prediction by exploiting the correlation between movements
of friends and acquaintances. This can be seen as a pro-
cess of discovering correlation patterns in networks of linked
social information and geographic data. It is possible to ex-
ploit such correlations for prediction and inference of aspects
related to user behaviour, namely their movements and their
social interactions (physical and distant ones through phone
calls). In particular, in our analysis we exploit and adapt the
concept of mutual information [8] in order to quantify cor-
relation and provide a practical method for the selection of
additional data to improve the accuracy of movement fore-
casting. We also show how this quantity correlates to differ-
ent types of social interactions of friends and acquaintances.

More specifically, the contributions of this work can be sum-
marised as follows:

• We first show that by means of a multivariate nonlinear
predictor [13] we are able to achieve a very high degree
of accuracy in forecasting future user geographic loca-
tions in terms of longitude and latitude. We compare
it with traditional linear prediction techniques (such
as ARMA [7]) and we show that these are not able to
capture the dynamics of individuals in the geographic
space.

• We discuss how the concept of mutual information can
be used to quantify the correlation between two users
and we demonstrate that it is possible to exploit move-
ment data of friends and acquaintances in order to im-
prove movement prediction. These social ties are mea-
sured using different indicators: presence in the ad-
dress book of a user, colocation and number of phone
calls.

• Finally, we study the correlation between mutual in-
formation of mobility traces of two individuals, human
movement predictability, and social interactions.

The key findings of our analysis are the following: 1) mobil-
ity correlation and the presence of social ties can be used to
improve movement forecasting by exploiting mobility data
of friends; 2) correlated movement is linked to the existence
of physical or distant social interactions and vice versa.

Our dataset that has been provided for the Nokia Mobil-
ity Data Challenge is composed of information related to 39



Figure 1: Time series corresponding to the movements of
user 179. No periodic behaviour is apparent in the move-
ment traces of the user.

users [15], including the following: GPS traces, telephone
numbers, call and SMS history, Bluetooth and WLAN his-
tory. We use the information of 25 of them, since the dataset
does not include phone numbers for 14 of them; therefore,
it is not possible to detect if and when phone calls occur
between them. We use GPS traces to analyse the movement
of the users.

2. MULTIVARIATE NONLINEAR
TIME SERIES PREDICTION

We now present how we apply nonlinear time series pre-
diction methods to the problem of forecasting the future
GPS coordinates of the users, given in input initially the
past movement history. We will then extend this model by
also considering the movement of other users (in particu-
lar friends) as input of the nonlinear predictor. In Fig. 1 we
show 5×104 time-ordered GPS measurements corresponding
to the position of user 179 on the Earth. We firstly apply
linear prediction models to this time series. The time se-
ries appears rather noisy with alternating spikes, nearly flat
values, corresponding to stationary points, and fluctuation
around an average value. We try to model such movements
in the space with a simple multivariate AR(p) + noise pro-
cess.

As for the order p of the multivariate autoregressive model
that best approximates the original time series, we have cho-
sen the one that minimises an information criterion, accord-
ing to Akaike [2] and Schwarz [18]. We have found that
p = 24 provides the best approximation. Hence, we use such
a model to perform a multivariate linear forecasting of 1000
GPS measurements for user 179. We validate the model by
comparing the latest 1000 real GPS measurements against
the forecasted ones1. The results are shown in Fig. 2, where
the real movements are indicated with dots and the fore-
casting with the linear model is indicated by the solid line.
It is evident that the forecasting is not in agreement with
observations. In fact, the prediction error on the position
(latitude and longitude) is of the order of 3◦, whereas the
error on the altitude is generally larger than 600 m.

However, although the time series are not regularly sampled,

1The latest 1000 real GPS measurements have not been in-
cluded in the procedure adopted to estimate the best order
p.

Figure 2: Multivariate nonlinear prediction of user 179 mo-
bility in the geographic space: the first 600 predictions, cor-
responding to about 60 hours, are shown. The dotted line
represents the true movements, the solid line indicates the
prediction within an ARMA model, while the dashed line
indicates the data obtained by means of a multivariate non-
linear predictor.

we find that they show some features typical of determin-
istic dynamics contaminated by noise. In fact, preliminary
inspection of phase space reconstruction by means of Takens’
embedding theorem shows an underlying structure, typical
of deterministic dynamical systems.

We model the position of a user on the Earth with a time-
varying four-dimensional state vector sn with the following
dimensions: hour of the day hn, latitude φn, longitude λn
and altitude ξn. The prediction of the future states of vec-
tor sn can be performed using different approaches [13]. We
choose the method based on the reconstruction of the phase
space of sn by means of the delay embedding theorem, since
this is considered the best state-of-the-art solution to this
problem. While the scalar sequence of coordinates may ap-
pear completely non deterministic, it is possible to uncover
the characteristics of its dynamic evolution by analysing
sub-sequences of the time series itself. In order to inves-
tigate the structure of the original system, the time series
values must be transformed in a sequence of vectors with a
technique called delay embedding. For a univariate time se-
ries measurement xn of a d−dimensional dynamical system,
the Takens’ embedding theorem [20] allows to reconstruct a
m−dimensional space (m ≥ 2d+ 1) with the same dynami-
cal characteristics of the original phase space. The key idea
is to build a delay vector xn by using delayed measurement
defined as follows:

xn ≡ (xn−(m−1)τ , xn−(m−2)τ , ..., xn−τ , xn), (1)

where τ is a time delay. Hence, the reconstruction depends
on the two parameters m and τ , which have to be estimated.
This technique can be extended to the case of the embedding
of a multivariate time series2 [5].

Under the hypotheses of Takens’ theorem, i.e., not noisy
time series of infinite length, the underlying dynamics can be
fully reconstructed by using only univariate measurements
of the dynamical system of interest. Unfortunately, real-
world measurement are noisy and with finite length: hence,
the phase space reconstruction is more precise if multivariate

2We refer to [21] (and references therein) for an overview of
practical applications of multivariate embedding.



measurements of the dynamical system under investigation
are performed.

Let us indicate with N the number of measurements corre-
sponding to an M−dimensional time series y1, y2, ..., yN ,
with yi ≡ (y1,i, y2,i, ..., yM,i) and i = 1, 2, ..., N . The result-
ing delay vector is

vn ≡ (y1,n−(m1−1)τ1 , y1,n−(m1−2)τ1 , ..., y1,n,

y2,n−(m2−1)τ2 , y2,n−(m2−2)τ2 , ..., y2,n,

...

yM,n−(mM−1)τM , y1,n−(mM−2)τM , ..., yM,n), (2)

where mj and τj , j = 1, 2, ...,M are respectively the embed-
ding and time delays corresponding to each component of
the multivariate time series.

Intuitively, this method searches the past history to find and
extract sequences of values that are very similar to the recent
history. Assuming a certain degree of determinism in the
system, the assumption is that, given a certain state (in our
case geographic coordinates), there is a strong probability
that this will be followed by the same next state.

Although several methods have been proposed to estimate
the values of embedding and time delays, in our analy-
sis we consider the same time delay τ for all the series.
In fact, for a given user, we have found that the first lo-
cal minimum of the average mutual information [9], gen-
erally adopted to estimate τ in the univariate case, is of
the same order of magnitude for any component. This fact
has also practical implications, since it simplifies the ap-
plication of this methodology for the analysis of our data.
The optimal embedding dimension is estimated by exploit-
ing the method of false nearest neighbours [14, 13, 11] in
the case of multivariate embedding [3]. For any point in
the data, an m?-dimensional phase space is considered and
the number of false nearest neighbours, i.e., points which
are neighbours in the m?−dimensional space but not in the
(m? + 1)−dimensional one, is estimated. The desirable em-
bedding dimension m is such that the percentage of false
nearest neighbours is small, e.g., below 10%. Any efficient
algorithm for counting nearest neighbours is allowed: in par-
ticular, we adopt the method implemented in the TISEAN
software [12].

Finally, the multivariate nonlinear prediction (MNP) is per-
formed by approximating the dynamics locally in the phase
space by a constant (see [6] for further information). In the
delay embedding space, all the points in the neighbourhood
Un of the state vn are taken into account in order to predict
the coordinates at time n+ k. Hence, the forecast v̂n+k for
vn+k is given by

v̂n+k =
1

|Un|
∑

vj∈Un

vj+k, (3)

i.e., the average over the states which correspond to mea-
surements k steps ahead of the neighbours vj .

Hence, we use MNP to forecast the same 1000 GPS mea-
surements discussed above. Again, we validate the model by
comparing the latest 1000 real GPS measurements against
the forecasted ones. The results for user 179 are shown in

Figure 3: PDF of positions occupied by four different users.
Top: users are friends or acquaintances. We say that two
individuals are friends or acquaintances if one of them is in
the other’s address book. Bottom: users are not friends or
acquaintances. The colour indicates the frequency of occu-
pation.

Fig. 2, where the real movements are indicated with triangles
and the forecasting with the nonlinear method is indicated
by the dashed line. The number of nearest neighbours used
to build the neighbourhood Un has been kept fixed to 10.
Intriguingly, the nonlinear forecasting is in excellent agree-
ment with observations of latitude and longitude, with a
global position prediction error equal to 0.19◦, and in good
agreement with the altitude coordinate, with a global alti-
tude forecasting error equal to 219.43 m.

The global error on the time series prediction is estimated
separately for each component using the following formula:

ej =

√√√√ 1

N

N∑
n=1

(ŝj,n − sj,n)2, (4)

with j = 1, 2, ...,M with M = 4, N = 1000. The overall
error between the prediction position and the real one is
given by the geodesic distance.

3. MUTUAL INFORMATION
In this section, we will briefly introduce the concept of mu-
tual information and we will show how this quantity can
be exploited in our analysis to measure the correlation be-
tween the movement of different individuals. In the follow-
ing section, we will then discuss how mutual information can
be used to select mobility data of other users that can be
exploited as inputs of the nonlinear predictors in order to
improve the prediction accuracy.

Let us assume that X and Y are two multivariate stochas-
tic variables, and let us indicate with PX(x) and PY(y), re-
spectively, the corresponding Probability Density Functions
(PDF). The joint probability is indicated by PXY(x,y). The
mutual information I(X,Y) between such two variables is
defined as follows:

I(X,Y) =
∑
x∈X

∑
y∈Y

PXY(x,y) log
PXY(x,y)

PX(x)PY(y)
. (5)



Figure 4: Left panel: scatter plot of the fraction of contacts
vs the mutual information estimated for pairs of users with
at least one contact, where triangles indicate the two pairs
of users connected by social ties in the datase. Right panel:
pdf of mutual information estimated for pairs of users with
no contacts at all, where arrows indicate the value of mutual
information for the only two pairs of user with social ties,
and no contacts, in the dataset.

The mutual information3 quantifies how much information
the variable Y provides about the variable X. For this rea-
son, it can be used as an estimator of the amount of cor-
relation between X and Y. In fact, if the two variables
are totally uncorrelated then PXY(x,y) = PX(x)PY(y) and
I(X,Y) = 0.

In our analysis X represents the motion of a user on the
Earth, the random samples x drawn from X correspond to
geographic coordinates, whereas the PDF of x quantifies the
fraction of time spent by the user in a particular position.
In Fig. 3 the two-dimensional PDF of positions occupied by
four different users is shown. Users 063 and 123 are friends
or acquaintances, while users 026 and 127 are not. We say
that two individuals are friends or acquaintances if one of
them is in the other’s address book.

We use the mutual information to quantify the amount of
correlation between the motion of different users, or, equiv-
alently, how much information the motion Y provides about
the motion X. However, it is worth noting that friendship
or acquaintanceship are only sufficient conditions to have
a high mutual information, but they are not necessary. In
fact, the mutual information between two users who are not
friends or acquaintances can be still high if the two users
behave similarly in space and time, i.e., if their motion is
similar for some reasons (e.g., a pair of students of the same
university department or a pair of colleagues of the same
company).

4. EXPLOITING MOVEMENT CORRELA-
TION AND SOCIAL TIES

We now discuss how mobility traces of individuals that have
correlated geographic patterns and social ties can be used
to improve the accuracy of movement forecasting.

Our approach can be summarised as follows: assuming that
we want to predict the movement of a user A, instead of

3The units of mutual information are nats when the natural
logarithm is used.

Nodes Social link Position Error Altitude Error

026 127 None 0.167◦ 66.33 m
063 123 Present 0.011◦ 20.95 m
094 009 Present 0.003◦ 5.57 m

Table 1: Global error, defined by Eq. (4), on the prediction
of position and altitude for pairs of users connected through
social links (defined as presence in the address book of the
user).

having only the vector describing the location of user A as
input, we will also consider the movement history of another
user B, characterised by mobility patterns that are strongly
correlated to those of the user we would like to predict. This
measure is given by the mutual information introduced in
the previous section.

From a mathematical point of view, the idea is to use a 8-
dimensional vector that is given by the juxtaposition of the
two time-varying state vector representing the states (time-
stamped GPS coordinates) of user A and another user B
with highly correlated mobility patterns, which we indicate
with snA and snB , as inputs of the multivariate nonlinear
predictor.

We find that by using additional traces from another user
with high correlation, the accuracy of the prediction im-
proves at least by one order of magnitude (and often of two
orders of magnitude) with respect to the case of using only
his/her own mobility data. Moreover, it is interesting to
note that social ties can also be used to select the user for
the additional traces as input. In fact, we find that if we se-
lect mobility patterns of individuals that are in the address
book of the user, the performance of the predictor improves
dramatically. At the same time, we would like to stress the
fact that the dataset contains a small number of users, so it
is difficult to make claims about the general validity of this
finding.

Hence, we perform the same analysis described in Section 2,
but including in the multivariate nonlinear prediction the
time series of movements corresponding to other users. The
global prediction error, defined by Eq. (4), of position and
altitude is reported in Tab. 1 for the three cases. As shown
in this table, we observe that the additional information
provided by the movement of a user socially linked to that
taken into consideration improves the prediction by more
than one order of magnitude with respect to the case of
users who are not socially linked to each other.

For each pair of users in the dataset, we count the total num-
ber of Bluetooth contacts and calls. Then, we estimate the
mutual information defined by Eq. (5) for each pair. In order
to quantify the amount of correlation between the fraction
of contacts and the mutual information, we build a scatter
plot between these two observables. The result is shown in
the left panel of Fig. 4, by considering only pair of users with
at least one contact. The points corresponding to pairs of
users with social ties are also shown (triangles). In the right
panel of Fig. 4, we show the PDF of mutual information ob-
tained by considering only pairs of users with no contacts at
all. The mutual information corresponding to pairs of users



with social ties is shown (arrows). Even if these plots show
interesting correlations for this specific dataset, we believe
no generalisations can be drawn from these plots, because
of the lack of sufficient statistics.

5. DISCUSSION
In the context of mobile applications, the prediction of mo-
bility patterns of users is of great interest for several reasons.
For instance, mobility forecasting could be used to determine
where the person will be and who he/she will meet. Such an
information can enable location-based mobile applications
to provide personalised services relating to the context the
user is in.

However, we are aware that the method we propose presents
some scalability issues for the implementation and the de-
ployment of the proposed technique. In particular, it is well
known that calculating mutual information in a multidimen-
sional environment (in this case, for a number of users larger
than two) is computationally expensive and does not scale
efficiently. In fact, in this case the computational complex-
ity scales as O(Nn), where N is the subset of users and n
is the cardinality of the tuple taken into account. However,
the problem we are dealing with usually involves no more
than 100 users (e.g., the size of the circle of most significant
friends for an individual). For this reason, we can still eval-
uate mutual information values for any pair of users, which
scales as O(N2). Nonetheless, the multivariate embedding
reconstruction is not feasible for a phase-space larger than
40-dimensional. Even for a 2-coordinate signal representing
mobility traces of a single user, it is not unusual to have a
large embedding reconstruction due to noisy data. Hence,
the mobility traces of no more than three users should be
considered simultaneously.

It is worth noting that many factors could be considered
as signals of social ties, some being better than others, de-
pending on the scenario taken into consideration. As a con-
sequence, the quality of predictions might be deeply affected,
either positively or negatively, by the criteria used to detect
social ties. In the Nokia MDC dataset, we had no informa-
tion about social ties between individuals, neither of real nor
virtual nature. In the provided dataset, the presence of an
individual in the address book of another one actually rep-
resents the strongest definition of a social tie. Moreover, two
individuals with no social ties might show similar mobility
patterns, resulting in a high value of mutual information.
However, it is worth remarking that the presence of a social
tie is only a sufficient but not necessary condition for hav-
ing a significant correlation between the mobility patterns of
two users. In fact, it could happen that two individuals are
not socially linked (i.e., they are not friends, co-workers and
so on), but their mobility can be highly correlated, e.g., in
the case of an individual whose work depends on the actions
of another one. If this is the case, the multivariate nonlinear
predictor will greatly benefit of such a correlation. On the
other hand, it could happen that two individuals with so-
cial ties show very different mobility patterns, degrading the
accuracy of the predictor. It is likely that individuals with
strong social ties (students, friends, co-workers and so on)
behave similarly and their mobility traces are characterised
by patterns with a high value of mutual information. Hence,
the accuracy of the predictor will be improved in the case

the dynamics of users is highly correlated, even if a social
tie does not exist.

Finally, we would like to point out two possible refinements
of this work, which we intend to investigate in larger datasets.
In this paper we have considered only the mutual informa-
tion of the mobility patterns between two individuals at time
zero, i.e., we estimate the mutual information for traces that
are not separated by any lag time. Actually, the movements
of two individuals could be correlated but not synchronised:
a time-delayed mutual information should be able to capture
such a feature. Hence, we plan to investigate the ranking of
the users with respect to the maximum value of the time-
delayed mutual information between their mobility patterns.
A possible second refinement is the use of multivariate non-
linear prediction with non-uniform embedding (different de-
lays) and local polynomial fitting [19] in order to increase
the accuracy of the prediction.

6. CONCLUSIONS
Through the analysis of the Nokia Mobile Data Challenge
traces, we have shown that it is possible to exploit the cor-
relation between movement data and social interactions in
order to improve the accuracy of forecasting of the future
geographic position of a user. In particular, mobility corre-
lation, measured by means of mutual information, and the
presence of social ties can be used to improve movement fore-
casting by exploiting mobility data of friends. Moreover, this
correlation can be used as an indicator of potential existence
of physical or distant social interactions and vice versa.
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